Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neural tracking of the musical beat is enhanced by low-frequency sounds.

Identifieur interne : 000767 ( Main/Exploration ); précédent : 000766; suivant : 000768

Neural tracking of the musical beat is enhanced by low-frequency sounds.

Auteurs : Tomas Lenc [Australie] ; Peter E. Keller [Australie] ; Manuel Varlet [Australie] ; Sylvie Nozaradan [Belgique, Canada]

Source :

RBID : pubmed:30037989

Descripteurs français

English descriptors

Abstract

Music makes us move, and using bass instruments to build the rhythmic foundations of music is especially effective at inducing people to dance to periodic pulse-like beats. Here, we show that this culturally widespread practice may exploit a neurophysiological mechanism whereby low-frequency sounds shape the neural representations of rhythmic input by boosting selective locking to the beat. Cortical activity was captured using electroencephalography (EEG) while participants listened to a regular rhythm or to a relatively complex syncopated rhythm conveyed either by low tones (130 Hz) or high tones (1236.8 Hz). We found that cortical activity at the frequency of the perceived beat is selectively enhanced compared with other frequencies in the EEG spectrum when rhythms are conveyed by bass sounds. This effect is unlikely to arise from early cochlear processes, as revealed by auditory physiological modeling, and was particularly pronounced for the complex rhythm requiring endogenous generation of the beat. The effect is likewise not attributable to differences in perceived loudness between low and high tones, as a control experiment manipulating sound intensity alone did not yield similar results. Finally, the privileged role of bass sounds is contingent on allocation of attentional resources to the temporal properties of the stimulus, as revealed by a further control experiment examining the role of a behavioral task. Together, our results provide a neurobiological basis for the convention of using bass instruments to carry the rhythmic foundations of music and to drive people to move to the beat.

DOI: 10.1073/pnas.1801421115
PubMed: 30037989
PubMed Central: PMC6094140


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neural tracking of the musical beat is enhanced by low-frequency sounds.</title>
<author>
<name sortKey="Lenc, Tomas" sort="Lenc, Tomas" uniqKey="Lenc T" first="Tomas" last="Lenc">Tomas Lenc</name>
<affiliation wicri:level="1">
<nlm:affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751</wicri:regionArea>
<wicri:noRegion>NSW 2751</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keller, Peter E" sort="Keller, Peter E" uniqKey="Keller P" first="Peter E" last="Keller">Peter E. Keller</name>
<affiliation wicri:level="1">
<nlm:affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751</wicri:regionArea>
<wicri:noRegion>NSW 2751</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Varlet, Manuel" sort="Varlet, Manuel" uniqKey="Varlet M" first="Manuel" last="Varlet">Manuel Varlet</name>
<affiliation wicri:level="1">
<nlm:affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751</wicri:regionArea>
<wicri:noRegion>NSW 2751</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nozaradan, Sylvie" sort="Nozaradan, Sylvie" uniqKey="Nozaradan S" first="Sylvie" last="Nozaradan">Sylvie Nozaradan</name>
<affiliation wicri:level="1">
<nlm:affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia; sylvie.nozaradan@uclouvain.be.</nlm:affiliation>
<country wicri:rule="url">Belgique</country>
<wicri:regionArea>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751</wicri:regionArea>
<wicri:noRegion>NSW 2751</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert</wicri:regionArea>
<orgName type="university">Université catholique de Louvain</orgName>
<placeName>
<settlement type="city">Louvain-la-Neuve</settlement>
<region type="region" nuts="1">Région wallonne</region>
<region type="province" nuts="1">Province du Brabant wallon</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>International Laboratory for Brain, Music, and Sound Research (BRAMS), Département de Psychologie, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC H3C 3J7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>International Laboratory for Brain, Music, and Sound Research (BRAMS), Département de Psychologie, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC H3C 3J7</wicri:regionArea>
<wicri:noRegion>QC H3C 3J7</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30037989</idno>
<idno type="pmid">30037989</idno>
<idno type="doi">10.1073/pnas.1801421115</idno>
<idno type="pmc">PMC6094140</idno>
<idno type="wicri:Area/Main/Corpus">000740</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000740</idno>
<idno type="wicri:Area/Main/Curation">000740</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000740</idno>
<idno type="wicri:Area/Main/Exploration">000740</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neural tracking of the musical beat is enhanced by low-frequency sounds.</title>
<author>
<name sortKey="Lenc, Tomas" sort="Lenc, Tomas" uniqKey="Lenc T" first="Tomas" last="Lenc">Tomas Lenc</name>
<affiliation wicri:level="1">
<nlm:affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751</wicri:regionArea>
<wicri:noRegion>NSW 2751</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keller, Peter E" sort="Keller, Peter E" uniqKey="Keller P" first="Peter E" last="Keller">Peter E. Keller</name>
<affiliation wicri:level="1">
<nlm:affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751</wicri:regionArea>
<wicri:noRegion>NSW 2751</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Varlet, Manuel" sort="Varlet, Manuel" uniqKey="Varlet M" first="Manuel" last="Varlet">Manuel Varlet</name>
<affiliation wicri:level="1">
<nlm:affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751</wicri:regionArea>
<wicri:noRegion>NSW 2751</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nozaradan, Sylvie" sort="Nozaradan, Sylvie" uniqKey="Nozaradan S" first="Sylvie" last="Nozaradan">Sylvie Nozaradan</name>
<affiliation wicri:level="1">
<nlm:affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia; sylvie.nozaradan@uclouvain.be.</nlm:affiliation>
<country wicri:rule="url">Belgique</country>
<wicri:regionArea>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751</wicri:regionArea>
<wicri:noRegion>NSW 2751</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert</wicri:regionArea>
<orgName type="university">Université catholique de Louvain</orgName>
<placeName>
<settlement type="city">Louvain-la-Neuve</settlement>
<region type="region" nuts="1">Région wallonne</region>
<region type="province" nuts="1">Province du Brabant wallon</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>International Laboratory for Brain, Music, and Sound Research (BRAMS), Département de Psychologie, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC H3C 3J7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>International Laboratory for Brain, Music, and Sound Research (BRAMS), Département de Psychologie, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC H3C 3J7</wicri:regionArea>
<wicri:noRegion>QC H3C 3J7</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation (psychology)</term>
<term>Adult (MeSH)</term>
<term>Attention (MeSH)</term>
<term>Auditory Perception (physiology)</term>
<term>Brain (physiology)</term>
<term>Electroencephalography (MeSH)</term>
<term>Female (MeSH)</term>
<term>Healthy Volunteers (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Motor Activity (physiology)</term>
<term>Music (psychology)</term>
<term>Periodicity (MeSH)</term>
<term>Sound (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activité motrice (physiologie)</term>
<term>Adulte (MeSH)</term>
<term>Attention (MeSH)</term>
<term>Encéphale (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Jeune adulte (MeSH)</term>
<term>Musique (psychologie)</term>
<term>Mâle (MeSH)</term>
<term>Perception auditive (physiologie)</term>
<term>Périodicité (MeSH)</term>
<term>Son (physique) (MeSH)</term>
<term>Stimulation acoustique (psychologie)</term>
<term>Volontaires sains (MeSH)</term>
<term>Électroencéphalographie (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Activité motrice</term>
<term>Encéphale</term>
<term>Perception auditive</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Auditory Perception</term>
<term>Brain</term>
<term>Motor Activity</term>
</keywords>
<keywords scheme="MESH" qualifier="psychologie" xml:lang="fr">
<term>Musique</term>
<term>Stimulation acoustique</term>
</keywords>
<keywords scheme="MESH" qualifier="psychology" xml:lang="en">
<term>Acoustic Stimulation</term>
<term>Music</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Attention</term>
<term>Electroencephalography</term>
<term>Female</term>
<term>Healthy Volunteers</term>
<term>Humans</term>
<term>Male</term>
<term>Periodicity</term>
<term>Sound</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Attention</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Mâle</term>
<term>Périodicité</term>
<term>Son (physique)</term>
<term>Volontaires sains</term>
<term>Électroencéphalographie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Music makes us move, and using bass instruments to build the rhythmic foundations of music is especially effective at inducing people to dance to periodic pulse-like beats. Here, we show that this culturally widespread practice may exploit a neurophysiological mechanism whereby low-frequency sounds shape the neural representations of rhythmic input by boosting selective locking to the beat. Cortical activity was captured using electroencephalography (EEG) while participants listened to a regular rhythm or to a relatively complex syncopated rhythm conveyed either by low tones (130 Hz) or high tones (1236.8 Hz). We found that cortical activity at the frequency of the perceived beat is selectively enhanced compared with other frequencies in the EEG spectrum when rhythms are conveyed by bass sounds. This effect is unlikely to arise from early cochlear processes, as revealed by auditory physiological modeling, and was particularly pronounced for the complex rhythm requiring endogenous generation of the beat. The effect is likewise not attributable to differences in perceived loudness between low and high tones, as a control experiment manipulating sound intensity alone did not yield similar results. Finally, the privileged role of bass sounds is contingent on allocation of attentional resources to the temporal properties of the stimulus, as revealed by a further control experiment examining the role of a behavioral task. Together, our results provide a neurobiological basis for the convention of using bass instruments to carry the rhythmic foundations of music and to drive people to move to the beat.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30037989</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>09</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>115</Volume>
<Issue>32</Issue>
<PubDate>
<Year>2018</Year>
<Month>08</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Neural tracking of the musical beat is enhanced by low-frequency sounds.</ArticleTitle>
<Pagination>
<MedlinePgn>8221-8226</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1801421115</ELocationID>
<Abstract>
<AbstractText>Music makes us move, and using bass instruments to build the rhythmic foundations of music is especially effective at inducing people to dance to periodic pulse-like beats. Here, we show that this culturally widespread practice may exploit a neurophysiological mechanism whereby low-frequency sounds shape the neural representations of rhythmic input by boosting selective locking to the beat. Cortical activity was captured using electroencephalography (EEG) while participants listened to a regular rhythm or to a relatively complex syncopated rhythm conveyed either by low tones (130 Hz) or high tones (1236.8 Hz). We found that cortical activity at the frequency of the perceived beat is selectively enhanced compared with other frequencies in the EEG spectrum when rhythms are conveyed by bass sounds. This effect is unlikely to arise from early cochlear processes, as revealed by auditory physiological modeling, and was particularly pronounced for the complex rhythm requiring endogenous generation of the beat. The effect is likewise not attributable to differences in perceived loudness between low and high tones, as a control experiment manipulating sound intensity alone did not yield similar results. Finally, the privileged role of bass sounds is contingent on allocation of attentional resources to the temporal properties of the stimulus, as revealed by a further control experiment examining the role of a behavioral task. Together, our results provide a neurobiological basis for the convention of using bass instruments to carry the rhythmic foundations of music and to drive people to move to the beat.</AbstractText>
<CopyrightInformation>Copyright © 2018 the Author(s). Published by PNAS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lenc</LastName>
<ForeName>Tomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keller</LastName>
<ForeName>Peter E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Varlet</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nozaradan</LastName>
<ForeName>Sylvie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia; sylvie.nozaradan@uclouvain.be.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>International Laboratory for Brain, Music, and Sound Research (BRAMS), Département de Psychologie, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC H3C 3J7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):E11004</RefSource>
<PMID Version="1">30425177</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):E11002-E11003</RefSource>
<PMID Version="1">30425178</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2781-2782</RefSource>
<PMID Version="1">30696761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2779-2780</RefSource>
<PMID Version="1">30696762</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000161" MajorTopicYN="N">Acoustic Stimulation</DescriptorName>
<QualifierName UI="Q000523" MajorTopicYN="Y">psychology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001288" MajorTopicYN="N">Attention</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001307" MajorTopicYN="N">Auditory Perception</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004569" MajorTopicYN="N">Electroencephalography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064368" MajorTopicYN="N">Healthy Volunteers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009043" MajorTopicYN="N">Motor Activity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="N">Music</DescriptorName>
<QualifierName UI="Q000523" MajorTopicYN="Y">psychology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010507" MajorTopicYN="N">Periodicity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013016" MajorTopicYN="N">Sound</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">EEG</Keyword>
<Keyword MajorTopicYN="Y">frequency tagging</Keyword>
<Keyword MajorTopicYN="Y">low-frequency sound</Keyword>
<Keyword MajorTopicYN="Y">rhythm</Keyword>
<Keyword MajorTopicYN="Y">sensory-motor synchronization</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30037989</ArticleId>
<ArticleId IdType="pii">1801421115</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1801421115</ArticleId>
<ArticleId IdType="pmc">PMC6094140</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Neurosci. 2016 May 24;10:229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27252619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurosci. 2017 Apr 12;11:208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28446864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Percept Psychophys. 1985 Jan;37(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3991313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1201-1206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Percept Psychophys. 2007 Jul;69(5):699-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17929693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2015 Feb 18;5:1185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25774137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Music Percept. 2010 Sep;28(1):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21776183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 1986 Mar;79(3):702-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2870094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Audiol. 2003 Jun;42(4):177-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12790346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24982142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Oct 31;11(10):e0163938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27798645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2017 Oct;95:156-168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28910668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 2003 Dec;186(1-2):57-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14644459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2001 Apr;109(4):1526-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11325124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Syst Neurosci. 2014 May 13;8:57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24860439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2015 Feb;27(2):400-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25170794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 2014 Feb;308:60-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23916754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2012 Dec 5;32(49):17572-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23223281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 1993 Mar;93(3):1563-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8473610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Jul 13;31(28):10234-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21753000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2014 Dec 19;369(1658):20130393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25385771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2015 Aug 14;6:1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26321991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2015 Mar;1337:111-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25773624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Hear. 2016 Jan-Dec;20:2331216516682698</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28215113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2017 Jun 28;37(26):6331-6341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28559379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2018 Feb;47(4):321-332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29356161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2015 Aug 26;9:444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26379522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Apr 20;31(16):6079-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21508233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2013 Mar;25(3):401-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23163420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2009 Jan;45(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8913-E8921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28973923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 05;6:20612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26847160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Res. 2017 Jul 15;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28712036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2015 Mar 19;370(1664):20140093</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25646516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Sci. 2014 Dec;25(12):2147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25344346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Topogr. 2018 Mar;31(2):153-160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29127530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2017 May 09;11:230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28536514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hear Res. 2000 Mar;141(1-2):180-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10713506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis. 2015 Jan 16;15(1):15.1.18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25597037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Syst Neurosci. 2015 Nov 25;9:159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Struct Funct. 2017 Jul;222(5):2389-2404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27990557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2009 Jan;45(1):72-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19058797</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Belgique</li>
<li>Canada</li>
</country>
<region>
<li>Province du Brabant wallon</li>
<li>Région wallonne</li>
</region>
<settlement>
<li>Louvain-la-Neuve</li>
</settlement>
<orgName>
<li>Université catholique de Louvain</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Lenc, Tomas" sort="Lenc, Tomas" uniqKey="Lenc T" first="Tomas" last="Lenc">Tomas Lenc</name>
</noRegion>
<name sortKey="Keller, Peter E" sort="Keller, Peter E" uniqKey="Keller P" first="Peter E" last="Keller">Peter E. Keller</name>
<name sortKey="Varlet, Manuel" sort="Varlet, Manuel" uniqKey="Varlet M" first="Manuel" last="Varlet">Manuel Varlet</name>
</country>
<country name="Belgique">
<noRegion>
<name sortKey="Nozaradan, Sylvie" sort="Nozaradan, Sylvie" uniqKey="Nozaradan S" first="Sylvie" last="Nozaradan">Sylvie Nozaradan</name>
</noRegion>
<name sortKey="Nozaradan, Sylvie" sort="Nozaradan, Sylvie" uniqKey="Nozaradan S" first="Sylvie" last="Nozaradan">Sylvie Nozaradan</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Nozaradan, Sylvie" sort="Nozaradan, Sylvie" uniqKey="Nozaradan S" first="Sylvie" last="Nozaradan">Sylvie Nozaradan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000767 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000767 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30037989
   |texte=   Neural tracking of the musical beat is enhanced by low-frequency sounds.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30037989" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021